Conservation Chemistry I and II
INF 393C.8, INF 393C.9

Summer, 2009
Sheila Siegler
email: sheila@webdesignfoundry.com
School of Information
University of Texas, Austin

Description

Introduction to physical and chemical properties of materials used in fabrication, identification and repair of books, photographs, manuscripts and related objects.

Adhesives:

Bonding, adhesion and cohesion, wetting, Tg, Young’s modulus, adhesive testing, deterioration pathways, Feller’s classifications, Animal glues, Polysaccharides, modified cellulose, synthetic adhesives, pressure sensitive adhesives
Lab: adhesive testing

Analytical techniques:

Stages in experimentation, electromagnetic spectrum, calculation of double bond equivalents, FTIR, ATR, Lasers, Raman, UV-Vis, Mass Spec, Elemental analysis, Chromatography, Microscopy, SEM, SEM/EDS
Labs: TLC, SEM, ATR, Confocal microscopy

Cellulose, Starch, Proteins:

Chemistry of polysaccharides, Amylose, amylopectin, deterioration, Paper testing, Arrhenius equation, deterioration, Feller classification of deterioration stages, ASTM paper ageing research program, Proteins, amino acids, deterioration

Color, Light and Chemistry:

Human color perception, color temperature, black body radiation, Color measurement systems, Munsell, CIE, L* a* b*, Chemiluminescence, fluorescence, electron spin numbers, phosphorescence, light absorption, resonance structures, pigments and dyes,
Lab: Colorimeter

Enzymes:

101, Lock and key explanation,
102 Proteins, primary secondary and tertiary structures, activity parameters, catalytic activity, homogenous and heterogeneous catalysts,
103 Co-factors, poisoning, immobilization methods

Functional Groups: (getting up to speed activity)

Functional group classification, Chemical nomenclature, oxidation numbers

Modern paper making materials

Chemistry of Paper deterioration (in more detail), processes from tree to paper, fibers from wood, lignin, hemicelluloses, mechanical wood, refiner mechanical wood, thermo mechanical wood, semi-chemical methods, bleaches, chemical wood processes, Kappa number, commercial paper classification, additives in paper making, internal sizes, fillers, neutral pH systems, surface sizes, wet strength additives, dry strength additives.

Moles and molarity

A short re-cap

Polymers:

Classification, synthesis, side group conformations, amorphous and crystalline areas, homopolymers, co-polymers, thermoplastic, thermo set, Tg (Sperling’s classifications) hysteresis, elastomers, optical properties, info on different polymers (ie., Nylons, epoxys, acrylics), polymer deterioration,

Redox reactions:

A short re-cap

Skins, leather and parchment:

Parts of the skin, collagen, ancient and modern leather making techniques, tanning, chrome tanning, alum tawed, oil tanned, smoke tanning, vegetable tannins, leather deterioration, parchment making, surface preparations, tannins, deterioration

Solvents:

Van der Waals forces, heat of vaporization, cohesive energy density, Hilderbrand solubility parameters, Hansen parameters, Teas chart, Feller’s chart of solvent mixtures Labs: TLC using PRISM parameters, removal of aged adhesives

Statistics:

Estimating errors in experiments, precision and accuracy, systematic and random errors, mean and standard deviation, Gaussian distribution, Null hypothesis
Water:
Chemical formula of water (no, it’s not H₂O), polarity of water, primary states of water, dynamic equilibrium, dissociation, dissociation constant, pH, Acids and Bases, Arrhenius, Bronsted and Lowry, Lewis, Usanovich, hard and soft acids/bases, strength of acids and bases, conjugate acids and bases, buffer solutions, wash water quality, hard water, water softeners, de-ionized water, reverse osmosis, Lab: Comparing pH testing methods, testing water for hardness.

Photography:
Silver chemistry, development, gelatin, Daguerreotype, Gallotype, salted out paper, Collodion, Ambrotype, other metals, Lab: pin hole photography